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Abstract

Our recent paper [6] presented a model for thin plates vith rapidly

varying thickness, distinguishing between thickness variation on a length

scale longer than ("a < 1"), on the order of ("a - 1"), or shorter than

("a < 1") the mean thickness. We review the model here, and identify the

I"a < I" case as an asymptotic limit of the case "a - 1". We then present

a convergence theorem for the "a - 1" case, showing that the model correctly

represents the solution of the equations of linear elasticity on the

three-dimensional plate domain, asymptotically as the mean thickness

tends to zero.
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1. Introduction

in [6] we presented a model for the bending of symmetric, linearly

elastic plates with rapidly varying thickness. The model distinguishes

between three cases, in which the thickness varies on a length scale longer

than ("a < 1"), on the order of ("a - 1"), or shorter than ("a > 1") the

mean thickness. (See §2B for the precise meaning of the parameter a.)

Our main goal in this paper is a convergence theorem for the "ia = 1"t

case, assuming that the thickness varies periodically and the plate edges

are clamped. The corresponding convergence result for flat, homogeneous

plates is well-known [8,9]. Caillerie has recently proved an analogous

result for flat plates with rapidly varying composition [2,3]; his method

does not, however, extend readily to the problem treated here.

We begin, in sections 2 and 3, with a review of the model. The vertical

midplane displacement satisfies, in each case, a fourth-order equation

a a (M MY 6w

the formula for the effective rigidity tensor MHSY differs, however, in

the three cases. Proposition 3.1 identifies the "a < 1" effective rigidity

as an asymptotic limit of the "a 1 " case. It is possible, at least

formally, to obtain the "a > 1" effective rigidity from the "a - 1" case

as the opposite limit, in which the horizontal scale of the cell be-

V, comes small. To make this analysis rigorous one seems to need regularity

assumptions, the validity of which are not obvious in any interesting

cases. Though this analysis is not included in the present paper, we

mention it here, in connection with Proposition 3.1, as an indication that

the case "a - I" - when the period is comparable to the mean thickness-

is in a certain weak sense universal.
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Sections 4-6 present the convergence proof. Our principal tools are

two integral inequalities, an "averaging lemma", and lots of integration

by parts.

The first integral estimate, Proposition 4.1, is a Korn-type inequality,

in which the dependence of the "constant" on thickness is made explicit.

The second estimate, Proposition 4.2, asserts a weak form of Kirchhoff's

hypothesis for any displacement field which obeys certain symmetries.

Our "averaging lemma", Proposition 5.1, amounts to an estimate for the

work done by a vertical, locally equilibrated load. We call it an averaging

lemma because it is used in the convergence argument to replace oscillatory

expressions by their local averages, modulo error terms.

The main convergence argument, given in section 6, proceeds very

*_ C Cstraightforwardly: we simply estimate the energy of u-uwhere u

solves the equations of three-dimensional linear elasticity, and u *is an

ansatz motivated by formal asymptotic expansion. The main result, Theorem 6.1,

is thus one of convergence in energy on an c-dependent domain. The conver-

gence of the mean vertical displacement, in a weighted L -_norm on the mid-

plane, follows as a corollary.

The convergence analysis presented here applies only to the case ''a 1"

and only to plates with periodic thickness variation and clamped-edges. The

method appears, however, to be rather more general. We believe it could be

applied with other boundary conditions at the plate edge, and with plates

whose thickness is "locally periodic" or "qua siper iod ic" in the sense of

161. An analysis of the cases "a < 1" and "a > 1" could perhaps be done

following a similar outline.

Structural engineers are interested in plates of the type studied

here, because they may be stronger per unit weight than uniform or slowly
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varying ones, in certain design contexts. Some references to the literature

on structural optimization can be found in [6]. It is natural to ask which

scaling - a < 1 , a = I , or a > 1 - produces the strongest structure: we

hope to address this issue in a forthcoming paper.

We acknowledge with pleasure advice from George Papanicolaou on aspects

of this project.

I
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2. Preliminaries

We shall write x - (xlx 2,x3) for vectors in I3 and x - (xl,x 2)

for vectors in R2. Integer latin indices will range from 1 to 3, and Greek ones

from 1 to 2; the summation convention applies whenever indices are repeated.

2
We write 3, = a/axi and iJ - 3 laxiax "

2A. Constitutive laws

Associated with any displacement u - (ulu 2,u3) of R3 is its linear

strain tensor

(2.1) ei_(u) = (.ui+iu)

and the corresponding stress tensor

(2.2) ai (u) = Bjkek(u)

ij - _u) k

The fourth-order tensor Bijkf satisfies

Bijkt Bjikt = Bijtk B ktij

we assume that the elastic energy

Bijkt eij ek

is positive definite on symmetric tensors.

We shall always assume that the horizontal planes are planes of

elastic symmetry; this means [7]

B 0y3 i0 , Ba333 0

Finally, we define a positive definite fourth-order tensor



5B B•

B Ba033 By6 33
(2.3) B aBY6 aOY6 B3 3 3 3

2B. Plate geometry

The plate geometry is determined by

(2.4a) a smoothly bounded domain fl in the x- x2  plane,

representing the midplane;

(2.4b) a real parameter a, 0 < a < , determining the

length scale of the thickness variation, and

(2.4c) a bounded function h(n) , 0 , defined for any

n EI2 and periodic in n with period L

a = 1,2

The three-dimensional region occupied by the plate is

R(c) = jx: ,x~ < Eh (x/ea)}

R(e) denotes its natural periodic extension

(2.5) R(E) - {x : x (  ,2 IX31 < oh(x/ca)

We assume throughout that R(e) is a connected, C2 ,a domain, for some

H6ider exponent a > 0 . The function h may nonetheless have discontinuities -

i.e. parts of AR(E) may be vertical; and h may vanish on a set of

positive measure - i.e. our plates may have holes. (In section 3D, where

we study an asymptotic limit of the a - 1 case, we shall impose additional

smoothness assumptions on h .)

We denote by 3OR(e) the outer edge of the plate,

0
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a 0R(C) {x : x E an 1x31 < ch(x/ca)

Y+R() and aR(c) are the remaining parts of BR(c) above and below
C

Q ,respectively; v is the outward unit normal to 3R(c).

When, in the following, we call a function "periodic in n " we shall

always mean that it has the same periods L = (LI,L2) as h It will

often be necessary to average a periodic function f(D) with respect to

:

Mf 1 kl2 1 2  f(n)d11 d~

We shall use the norm

11g1 , = O R(E) 1g12 x_) 1/
2  ;

The same notation will be used for tensors, in which case Igi2 denotes

the sum of the squares of the components.

2C. Loads and equations of equilibrium

The following disucssion applies for a - 1; when a # 1, it is more

natural to work with the load per unit projected surface area, see (6].

We suppose that the plate is loaded along its faces a R(c) by forces+

c 3(0,O,f(x;x/c)) per unit surface area, and that the body force is

S2(O,O,F(x;x/c)) per unit volume, where

(2.6) f(x;n) and F(x;n) are bounded, periodic in

n , and even with respect to T 3 .

The equations of elastostatic equilibrium for the clamped, c-dependent,

three-dimensional plate are
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r 0 1=1,2(2.7) - [aolj(u E )  =  2 F  = in R(c)

E) C fO i=i,92

(2.8) olj (u )V - 3 on +(c)# cC f i=3--!

(2.9) u= 0 on 30R(c)

This scaling of the loads ensures that uE stays bounded as E 0

Notice that

C C C

(2.10) U 1, U2  are odd ; u 3  is even

B,0 are odd ; o is even

with respect to n3 " as a consequence of (2.6); X will denote the space

of all admissible displacements that obey these symmetries:

( 2 .1 1 ) x - u E H I( R ( ) ) : 
,

C odd and u 3 is even in x3

where H (R()) is the space of (vector-valued) functions with square-

integrable first derivatives.

The restriction to even loads is merely a matter of technical convenience.

If F and f are odd in n3 . then the solution of (2.7)-(2.9) satisfies

(2.12) II (u) < c 7/2

In case IvEI >, c > 0 on 3+R(c) (i.e. 3+R(c) has no vertical parts),

one can prove (2.12) by taking the inner product of uI with (2.7),
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integrating by parts, and using a PoincarC inequality on each vertical line.

The proof in the general case is similar, but it requires the methods of

section 4. We shall show here that for even loads

(2.13) II e(u ) II c

wherever the "mean load" is nonzero. Since the problem is linear, any load

can be decomposed into its even and odd components; by (2.12) and (2.13),

the even part is the one that produces the dominant strain.

mt
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3. Review of the model

-The model presented in (61 provides the initial terms of an asymptotic

expansion for the displacement vector, and - most importantly - an equation

for the limiting vertical displacement of the midplane. This equation has

in each case the form

(3.1) a (M 6  w) = F

where F = F(F,f)(x) is the rescaled mean vertical load (see (5.1) for the

precise definition of F when a = 1; for a # 1 see [6]). The tensor

M14B¥ represents the "effective rigidity" of the plate; it satisfies the

usual symmetries

Mciy6 M ay6 = asy = yB ,

and it is positive definite in the sense that

Ma6y6 EcoC6>1c1I

for symmetric tensors 08 " The formula for M aO depends on whether

a > I , a = 1 , or a < 1; in each case it is determined by h through

the solution of certain "cell problems" with periodic boundary conditions.

3A. The case a < 1.

Let H2 ( L _ j) denote the set of functions which areper =_i 2 2

periodic with period L = (LI,L 2) , with square integrable derivativesof

order .5 2 . The auxiliary functions 4,c(n) are in this space, and are

characterized (modulo a constant) by
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(3.2) M[h3B 3i2 Ba 2 11r3 B _2 1 2

6 an an6  nPan o y1= -  n.I n 62"an8) an Pc aa

t~V EH  a

per al 2 2

The tensor H is
a$Y6

(3.3) M[ T .% n

3 aB8 Y6  + M~3 CLBPO a 2 a

The lowest order terms in the displacement vector are

* a -3w a3a (0)a - 2ax3a( i w)

(3.4)

* W + 2ac a w + 1 2 33y 2 0+ I n
3  a$ i + x3  13333 an Y aniB) 3oaw

where w solves (3.1), with the appropriate boundary condition. The

right side of (3.4) must be evaluated at n , /ca after differentiation.

3B. The case a = 1.

For any function _(n) we define

(3.5) E j(q) + g +  
1

ij 2\an~ an

and

Li
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(3.6) ij (§ ) - BiJt Ekt(4)

Let Q denote the resealed period cell determined by h ,

L
(3.7) Q - {T : In I < , bIn h()

and let r a denote the vector

(3.8) r . 1 2 B3 3y6  a2  1
--n3 a n)'n 3 an+ 'n3 3333 s)n

The auxiliary functions __t E HE I (Q) are periodic in n , and they satisfy

(3.9) 1Q =~(e)ij3~r -QJj(csEi

for any E H (Q) which is periodic in n . The tensor M 8 y6  is given

by

(3.10) M 1 Qij (.O+raO)E (E +ry6 )dn
ct0 y6 L1L2  _ -

3 4h~~> 6] L 1L 2  Qf3 aAiXP

The lowest order terms in the displacement vector are

* xa W+ 2c 0 )a W

Y 3y YY a
(3.11)

• W + I 2 -- 3asw + 2,CB (x/)3 Bw .u3 2 w ( 3) B 33333as
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3C. The case a > 1.

We define a tensor C , for use in this section only, by

C 3B3  C3aB3 C330 3a38 0

C ijk- B ijk otherwise.

For any function I(n) , (f) will denote the associated "stress",

(3.12) I-j (-0 = C ijk E t(-) .

Let Q and r a  be as in (3.7), (3.8), and let V be the space of

functions jE L 2(Q) such that

I is periodic in n , q3 depends only on n3 and

IQ ZIj( O)EiJ*)dn <

When a > 1 , the auxiliary functions ,a are in Y , and they satisfy

(3.13) fQiij (ea)Eij (_)dn = - if eij ( E)Eij (t) d_

for every E V . The tensor M 8O 6 is given by

(3.14) - f l J C(I+r) Ei (S-76+ry6)dn

and the lowest order terms in the displacement vector are
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u*a-3 + l+a faB

Y 3 y asw

(3.15)
* W 1 I~ 2 B 33aB a +2 0 a 

3 2l( 32 B33 3 3  a 3ciB

The right hand side of (3.15) is evaluated at n - (X/a ,x3 )

In 161 we wrote (3.13)-(3.1) in a sli'htly different form, to emphasize

the connection with homogenization of a rough surface. The functions
cS cs8 %33
g a(3) as (1) , and ti3 (n) used in [6] correspond to the decomposition

a (n8  ) as1n 2 B33a

( 3 ) = (n3) 2 3 B3 33 3

(3.16)

aS -(n
3 : .s(D) + !&L' (n3) . 3(B)

One can characterize tiJ(.,n3) as the solutions of certain cell problems

on the horizontal slices of Q ; g (n 3 ) may be expressed in terms of

certain averages of viJ

3D. An asymptotic limit of the case a 1.
.a<l

For a given periodic function h(2 , let Ma" ' be the effective rigidity
aS16

of the associated "a < 1" plate defined by (3.3). Let M' denote thea nY6

effective rigidity of the "a 1" plate with thickness variation

h = h(n/6) 0 < A < CO

i.e--, H6 is as defined by (3.10) with h replaced by h . We show

here that Ma<l as a -- , if h is smooth enough; the proof is

similar to Nordgren's convergence argument [9]. A related result in the
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context of Laplace's equation may be found in [2].

Proposition 3.1: If h > c > 0 is smooth enough then

(3.16) 
lim HSA . ,a<l

Proof:

Let denote the solution of (3.9) with h replaced by h

which is periodic with period AL . We introduce the rescaled variables

1
(3.17) n (a=l,2) , 3

which range over the A-independent cell

(3.18) Q' { ' In' < L , a = 1,2 ; l131 < h(v')

and note that

(3.19) Ec3( 2" ' 2 -

3

e 33(k) s3q3

Let aBn)be the solution of (3.2) with thickness h(n') ,and define
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(3.20) ( s ) 2 (0,0,, o ) + 6 -n - 40 ,0

+ 0,.(n;)2 B33 3
2 B 3333 3n a6

We shall show that

(3.21) lir f d' 0

SQ'

provided that

(3.22) W _ ) has bounded derivatives of order i5 4

which is true for sufficiently regular h Assertion (3.16) follows

immediately from (3.21), since

(3.23) MI',6 I I lij( ao + ao E (€6+r-Y6)drj-fi - (v s ,B+rl)E
(3.23) L LL 2  QV -4 - ij -6

and

liB, r)I .: (a 6+rY)d n ' .a<l

For fixed a and 8 , define a tensor Tj(rn') as follows: for

y , 6 ( 11,2)

y6 COS -B 3 -B¥ 60 an'an' I ;

for y - 1,2,
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"~~ ~ -- B- h. ,!,h -,T:+,o+

~aBy 6 an 6  y6pa an , arna, an

and x33 is the solution of

(3.24) 33 6-1 '3
na

Y

ry6 art. an,' y6pa 'an' an, an n')r33,.+h(n) ,3 •

One verifies the consistency condition for (3.24),

Eh a 3 an; B,,+ Ban

by means of (3.2). A straightforward computation shows that

(3.25) YL(4j:~ B -s + 0(6- 1

and that

(3.26) an j n-- + - in Q'

"I___ 1/ 1  
VV 3  0 on 3 Q,

where 3 +Q'I are the upper and lower faces of Q' , and v' is the outward

unit vector normal to a+Q' .
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Le t )x a - L using (3.9), (3.25), (3.26), and Green's formula,

we see that

(3.27) Iij (X) E~j X)dn,- f1* I 1j(±?O+ra0 ) E 1.()d A

= r~ T 4iE i 4(x)dD' + 0(s 1 IIE(.X)I11 2 ('

=0(61 IIE(X)II 2

which implies (3.21).
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4. Integral estimates

This section establishes certain integral inequalities for

u E H (R(c)) , We consider only the case a = 1 , i.e.

R(s) - {x : x ( , x31 < ch(X/E)}

IX31
(see, however, Remark 4.2 at the end of the section). Our method Is to

decompose R(e) into O(C ) subdomains, each with diameter of order c

and to apply Korn's inequality on each subdomain.

We begin by reviewing Korn's inequality on the unit-sized domain

LQ-- {_x : Ix al < '/2 ,Ix 31 < h(x)}

R is the space of rigid motions,

ER<=-> yj(x) = Cijxj + di . for some

d ER I 3 and some skew-symmetric

matrix c

Vu denotes the (nonsymmetric) tensor aui , and e(u) denotes the

1
(symmetric) strain tensor '(a u

Lema 4.1: For any u ( H I(Q) there exists E R such that

(4.1) 1 V(U--)1 2 dx s C fQ le(u) 12 dx

and

(4.2) JQ I--I 2  < C IQ le( ) 2 x

The constant C depends only on Q.
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Proof: This follows, for any Lipschitz domain, from the results in 15].

Recall that R(E) is defined by (2.5). For each pair of integers

(k,t) let Rkt Rkd(E) denote the period cell centered around

(kcLItEL2 )

SILL L2

Rkt= {x CX-kLI < , -2

Ix3l < ch(XIE)}

Rescaling (4.1) and (4.2) yields the following result.

Lemma 4.2: For any ui E HI  (R()) and any pair (kj) there exists k E R" - ft o ca n

such that

(4.3) fRk I uT t)2 C f Rtje(u)j 2 d

and

Hu-1k i c f dx~Ce jd(4.4) fR kL2 2 Ie R k

The constant C in (4.3), (4.4) depends only on h

Let

k( k3 kt
whrx) - a x + 

where d k t ]R 3 and c ktis a skew-symmetric matrix. Clearly
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(4.5) C4 ick+l,t _ckL12 + 2 idk+l t -d k 1 2

C f I k+1,() _ 2

~ cJ k--i, () ~ (x)I dx 2dx 3

C< [I (I +19 - 12 + I - k 2)dx dx3 '

where the integrals are over the interface between Rkt and R+l,:

cL2

{x : x, - (k+ ) cL I x2-tcL2 1 <-2--1 x31 < ch(x/)).

One has the trace estimate (on any Lipschitz domain)

(4.6) fQ +I!I )dx

for all w E H I(Q) . Rescaling (4.6), and combining the result with (4.5),

we obtain

(4.7) 4 Ik+lt kt 2 + 2.] k+lZd' 12

(. JlCIV(! k+lt5 2dx + c-1 J I.k+l 2 dx

+Cf IV( -x")I 2 dx + c-1 J R- k 1 2dx)

A combination of (4.3), (4.4) and (4.7) gives

(4.8) £ 2 ISklt Sk1 + k1t t12

cc-  le(u) 12dx

k+1 t k
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Similarly, we have

(4.9) 21 S k,LeI_ kt 2 k.,2

cE-If !e(u)I2d x

Proposition 4.1: For ayU E HW(R()) with u = 0 on a0 R(,)

+ -ct -1 lie(u~) I
(4.10) Ih10 2,, + I111~ll2,c CE - 2,,

Proof:

Extend u to R(c) by letting it be zero outside R(e) and let

{y I be the tigid motions introduced in Lemma 4.2; notice that j = 0

if Rkt fl R(c) = 0. Let o(x) and 6(x) denote the piecewise bilinear

kfe kf
interpolants to o and d , i.e.

kt

ci1j(kcLl,ZeL2 ) = cj,

6.1c~lIL 2 ) = dy , and

o(x) , 6i(x) are bilinear functions

i(- -1) i L Lon {x:1x I - (k4 1)cL - (L+ 2 2

for each pair of integers (kI)

It is standard that



_~k 
l t k i + . .. ....... .. ,f- 

2. 
.

j2  IvI2 dx < C Y Udk+1,ldkZI
2 + Id-k + ldk I2)

and an analogous inequality holds 
for fI Vl 2dx .it follows, using

(4.8)-(4.9), that

2 1voj 2 dx + J v612 dx < cJ!I I e(u)I 2dx
2 - - 2 -R(c) -- -

Since a and 6 are compactly supported, we conclude 
by Poincard's

inequality that

2 2 + 1612dx < CF- Ie(u)1 2 x
2~ d + - 2 - R(E - -

and hence

(4.11) c1k1 
+ I - 2  <  1R- I (u)[2

k, -C

VTkf kl

Since V = . (4.3) may be rewritten

IRk vu-c k 12dx C R eIe(u)I 2dx

which leads immediately to

(4.12) R( - -- R ( u) I2  3 kt 2)
(412 1 _ -sC e l + f-. C s

Similarly, since < C( +d.I) for every E R() , (4.4)

leads to
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(4.13) 
R(E iul2dx C f2R(c) I e(u) I dx

+ 3 3 (Icktl2+dk 1 2)]

A combination of (4.11), (4.12) and (4.13) gives

(lul2+V -12 -2 f 2

R(E) +Ix 5) CE R(Cc Ie(u)j dx

which is equivalent to (4.10). II

Recall that the space X is defined by (2.11).
£

Proposition 4.2: For any u E X E

2
(4.14) X I ua+x3 a u3 11 2,, i5 CFile(u) l 2,,

a=l

Proof: When u E X , one may choose the rigid motions _I of Lemma 4.2

to have the same symmetry properties, i.e.

(4.15) d kt d k . k =0

1 2 c 1 2  0

for each k, . By (4.4) and (4.15),

J u kt 2 fxlu- kt2d
JR k -c a3 x3 1 d .t au a d

< C C2 J Ie(u)l 2dx

By (4.3), on the other hand,
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f~ ~~ ~ C~3 cId f 'lci(u3 ~),2 dx
kt

Since Ix3 I CE and ca U -ck3 this implies that2 2 jd

(4.16) I ,ua+x 3 a au 3 l2 dx C C 2 f R e(u) 2 d .

Adding (4.16) over all kj and over a = 1,2 we get (4.14).

Remark 4.1

Inequalities (4.10) and (4.14) are sharp in their dependence on E

For (4.10), one sees thij by considering u = (-x3aIW,-X 3a2w,w) , where

w w(xlX 2) . For (4.14), one uses u = (O,O,w)

Remark 4.2

The estimates in this section may be generalized considerably. We

assumed that u vanishes on 0R(e) to simplify its extension to R(C).

One verifies, with a little more effort, that Propositions 4.1 and 4.2

remain valid without this condition (modulo a rigid motion, in the case of

(4.10)). The argument presented here also works in the case a < 1 ; it

applies, moreover, even if R(c) is only a Lipschitz domain; and the

periodicity of the domain is not essential.

The case a > 1 is more subtle; we do not know nontrivial conditions

on h which assure (4.10) or (4.14) for that scaling. The methods of [I]

and [4] may be relevant in that case. ill
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5. An averaginR lemma

Our attention remains restricted to the case a 1. Q denotes the

rescaled period cell (3.7); e is the mean thickness

0 = 2M[h]

and a+Q is the "non-periodic" part of 3Q

L
a+Q= aQ n {n: -- ! , a = 1,2}

For any pair of functions G(x;q) and g(x;n) which are periodic in n

we define

(5.1) F(G,g)(>x) f I1 2
1JGd~+J-

(d denotes surface measure). Our goal is the following result.

Proposition 5.1: Suppose that G and g have derivatives in x of order

.2 which are C and C i' in n uniformly in x respectively. Then

for any u E XE

(5.2) fR(E) G(x;x/E)u3dx + c f g(x;x/)u 3d6

e-1 fR() F(Cg)(x)u 3dx 
c 312 Ile(u) 112,c

The constant C depends on G , g , and h , but not on c

The essence of Proposition 5.1 is the following: if F(G,g) = 0

and if w solves
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r0 i=1,2

- (a(w)) = 2G  i=3in R(c)

0 i=1,2

C G i*=3

ai (w C)v~ C {3 on a R(E)

w = 0 on a R(E)
0

then

(5.3) Ile(w ) 11 2 , < CE7 / 2

Indeed, if G and g are even in n 3 ' one proves (5.3) by substituting

E C
w for u in (5.2) and integrating by parts. If G and g are odd

then (5.3) is the same as (2.12).

Before beginning the proof, we introduce some more notation. Given

a pair G , g with F(G,g) = 0 , we say "I solves the cell problem

associated to C and g" if

(5.4) fQ IJ(_)Eij(I)dn = JQ Gq,3dn + fa gQ03 d6 (r)

for every E H (Q) which is n - periodic.

Recall that E() and J(4) are defined by (3.5) and (3.6). One verifies

easily that (5.4) has an r - periodic solution, unique up to a translation.

Since we have assumed that A(c) is a C 2 ,a domain,

(5.5) 11Jij (_t llcjO < C(l II o,a+ Ilg11 C ,,,MY •

All norms are on the rescaled period cell Q or the boundary a+Q . The constant

C depends only on Q and not on I, which occurs in (5.4)-(5.5) as a
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parameter. If we define

(5.6) T

then (5.5) leads to

(5.7) Cc 11C"2 sup(G . + g

Proof of Proposition 5.1

It suffices to consider the case F(G,g) = 0 ; the general case will

follow by considering G' = G - -1 F(G,g) , g' = g

Let f solve the cell problem (5.4) associated to G and g ; let

T be as in (5.6); and let u ( X . By Green's formula,

(5.8) R(E) Gu3  + f R( gu3d

- c dx + c t e j(u)dx,
IR(C) a B iB UR( ) i e ii -r

where 3 a (j) is evaluated at n - x/c after differentia-

axB a:B *Bx

wee x8 18

tion. Notice that is the stress of the cell problem associated

to - and 2 ; since the x - derivatives of G and g are assumed

C' and C' in n , uniformly in x,

(5.9) lE 1/2

We estimate the various terms in (5.8) separately. First,

(5.10) IfR(c) Tj etj(u)dx C "le(u) l1 29E

.. .. .. . .. ... .. . .. . ~ l III .. . II .... .I II. .. .. . .. I). .. .. .. . .. C.. . . . ..1 . ... .
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by (5.7) and Htlder's inequality. Next,

(5.11) I a u +x u+)dxa3a311 2,c

C c, 3 / 2  Ile( )I 12.

by (5.9), Hblder's inequality, and Proposition 4.2. Finally,

(5.12) If. a3 Ex ud < Cc 3/2 tI.i ,

R(c)

Cc C 112  Ile( )II1 2,,

by (5.9), Hilder's inequality, and Proposition 4.1. Combining (5.10)-(5.12),

we conclude that the right side of (5.8) equals

(51) Ea I3u 3dx 3/2 (u )(5.13) c Rj + 0c Ile( )I 2I
R(e) ax 36 4+0E;12c

At this point we need the following identity, which will be proved later:

(5.14) J ax - Idn = 0

This means that F 0) 0 Repeating the above argument with

the cell problem associated to and 0 we conclude that
a'C 30

(5.15) c a I u3 dx 2 j u dx

ax 38x 3

+ 0(c 5/2 Ile(u)l 2,c)

where E= are the stresses associated to the new cell problem. (We use



29

here our hypothesis on the second derivatives of C and g.) By Hollder's

inequality, Proposition 4.1, and the analogue of (5.9),

(5.16) J R(c) a = C . 2 IeQ0Il,€
IJ~r a $0 3 ,

Combining (5.8), (5.13), (5.15), and (5.16), we obtain (5.2).

It remains to prove (5.14). Substituting ' = (n 3 ,0,O) into (5.4)

gives

fQ~~ ~ I3(o d Q ij (_t) Ej MdI

0.

Since Q is independent of x , it follows that

fQ 3% Y3 axf d Q 3

The corresponding assertion for a 232 follows using _ = (0,n3,0)

and summation leads to (5.14). II
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6. Convergence

Let w solve

a8 (M 8 6 a 6w) =F(F,f) in Q

w = a w 0 on 30n

where M is defined by (3.10); let u* be as in (3.11); and let

nSy 6

u solve the three dimensional elasticity problem (2.7)-(2.9). We shall

prove that u *-u C converges to zero in energy, and that w is really the

limiting vertical displacement. In addition to the regularity hypotheses

on 0 and R(c) , formulated in section 2, we must assume that

(6.1) All x-derivatives of order 2 of F and f

are 'a and 1'a in n , respectively

(uniformly in x

By [6], M aW is positive definite; it follows that

(6.2) w has bounded x-derivatives of order < 6

Let i(t) ( C (o,- ) with (t) = 0 for t 1/2 and (t) = I for

t >, ; we define

S(x) = (C- dist(x, Q)) for x E Q

and

(6.3) u (-x 3 aIw, -x3a2w,w)

1 2 Ba833 2 mO+ (0,0, (x3) - + C 2 (x/c))0 .*aw ,23 B 3333 -
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where B is as in (3.9). Notice that u E X2

Since R(c) is assumed to be a C2 ,a domain, a standard regularity

result shows that y6 E C2 ,a(Q) . In particular the functions

an ki

are C1' and CO 'Q , respectively. We shall use this fact repeatedly,

sometimes without direct mention, in what follows.

Lemma 6.1: The functions u , u satisfy

(6.4) Ce -- )I 2, "  C 2

Proof:

Since __ and Ei.(_ ) are bounded functions,

II I l_'l 4 (x/c)112, c < c

II (1 *BxJ l, .< ce

II (1-E )E(4ia)Q(/E)ft2,c .< Cc

The estimate (6.4) follows easily, using (6.2).

Lemma 6.2: For each 0 , y , 6

(6.5) J Y,3 (q )d -  0
Q

Proof:

One argues as in the proof of (5.14), using (3.9) instead of (5.4) J



32

Lemma 6.3. Let v denote the outward unit vector normal to a Q For

each 8 , y , 6 , the functions

3a) a$(y6
( (n) f- 3  - _ , _. E Q

g(3) = [-n3B 6 +n 3 1aB(Y 6 )1v , - ( a+Q

satisfy

(6.6) F(G,g) 0

Proof:

By Green's formula,

n3 r B (,Y6 )dn [- ff n +n 3  8 (td)]VQ[-n O8 ;Q 3Basyd 3 las(Y<) a[6

This is equivalent to (6.6). -

Lemma 6.4: For each c , B ,y ,

(6.7) f n 3 4(0y)dn Q n 3 OIE Ali )

Proof:

Substituting (0,O,(n 3) ) in (3.9), and noting that -33 (r v6 )

we see that

(6.8) Q n3 133( y)d)& 0 ;
Q

on the other hand,
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(6.9) ( 
-  - B 3 33  33

a combination of (6.8) and (6.9) yields (6.7).

One easily verifies that 
(3.9) is equivalent to

a (Y 6 ) 0 in Q

lij(o76) _ on

If T is defined by

(6.10) 3. [-x3  0 + 5 '  '

one computes that

(6.) = W+ ) x/) w

in R(c) , and

i 0
(6.12) ij

to 6.: For an v E Xc

(6.13) JR() ije (v)dx = c 2 - 1 
E 

1 (s,) ) vCdx_

+ o0(E /2 lje(L)11 2,c)
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Proof:

By Green's formula and (6.12),

i eijej(v)dx - R ( j )vdx

We apply Proposition 5.1, using (6.11), (6.5), and the fact that 3y6 = 0

to see that

(T (j)v~d e< CE /  (v)I ,
fR(E) J 3j3 -, 2,

Writing v 3- xaav3 + (va+x,3 av3 and applying Proposition 4.2, we

obtain

f R ( r aj)vadx= - Cr x3aj )aav3dx~R(c) J R~c) x J -ja

+ o(c5/2 lie(v)II 2,)

A combination of these results yields

(6.14) T iJeij (v )dx = )a (aJ)3av 3 d-fR(E ) iji R(,) x31a

+ 0OC 5/2 1ie(v)

Iey)I2, c

We use Green's formula again:

(6.15) 3R(j) x C3 a ) vd=- fR() x 3  (T aj)v 3-

+ x3j Ca aV3

+aRc) 3j iici
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Now,

a( =C2 (1+11) , with

n 2 v
2- 8 w

1 = - n3B,3 C6 l=x/c

II = n3  )v 6w

and

- x 3j (T*) = clII + C2 IV , with

3 TY6)Y

IV= (3 By 8¥-3 aB(W' ))rl=x/ Eaa86 w

By Lemma 6.3 and Proposition 5.1,

(6.16) efR(E) 3 + EfaR(c) (I+I')v3 L5 0(5/2 11e V)I )

similarly, by Lemma 6.4, Proposition 5.1 and (3.10),

(6.17) c2  ( vdx E 2-1 v3 (x 7 /+ 2  e,(v)l )

Since Ma6y6 is constant and w satisfies (3.1), (6.15)-(6.17) imply

(6.18) J 3.(T'rj )aa v d 20- f R F(F,f)V3dx + 0( 5/2 Ie(v) 11 2,) .



36

A combination of (6.14) and (6.18) yields (6.13). D

We are ready to prove the main result of this paper.

Theorem 6.1: The ansatz * , defined bj (3.11), and the displacement uE

defined by (2.7)-(2.9), satisfy

(6.19) Ie u* E)Ii 2, :S Cc 2

Proof:

We shall prove

// £ 2
(6.20) IJe (u#- 2,c <  CE

with u as in (6.3). The estimate (6.19) is an immediate consequence,

using Lemma 6.1.

To prove (6.20), we first observe that

(6.21) I a(-u )-T 112,, <  C 2

where T is defined by (6.10). Indeed, a simple computation gives that

II*II_ <C5/2

while by Lemma 6.1,

lIJ(u*)-cr(u#)JI 2, 2 "< C c 2

(6.21) follows by means of the triangle inequality.

By Proposition 6.1 and (6.21),
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J()-i- 2 -' F0 2_IIe(v)H )(6.22) o a(u )e (v)dx c. + 0( 2  _.(622 R(,) 'j -ij R(O) 3' v

for any v E X Also,

(6.23) ia(u C)e ij(v)dx = c2 Fv 3d.x + 3 fv 3d A

(2) R(c) o( 1  JR(c) +R€

= C2 0 fR(c) Fv dx + O(E 71 2 lie(,()II 2, )

3 -

by (2.7)-(2.9), Green's formula and Proposition 5.1. Taking v = u -u

and subtracting (6.23) from (6.22), we conclude that

from which (6.20) follows. _

Remark 6.1

Had we specified the c-dependent boundary condition

U R0  (E ) = R 0 (c)

instead of (2.9) then the introduction of u would not have been necessary.

* C5/2 CThe above argument yields e(u*- )11 2,c <
_ C when u is defined

this way. i_

One verifies readily that jle(u*j1 2,, -C3 /2  whenever F # 0 . It

follows, using (6.19), that

(6.24) C-I 3/2 lle(U)I 2,c Cc3 12
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with C depending on F but not on c . A combination of (6.19) and

(6.24) yields the relative error estimate

I l e ( u * -u ) t

Ile(_U ) I 2,,

A similar argument, using (4.10), shows that

, 112,UL 112I IC 112 11Vu E 112

E

One may also compare u3  and w directly:

Corollary 6.1: If one defines

€( ~ ~ C _ ( x / E
w-(x) u (x)dx

Vx/) ) -.h/) 3 3- 3

wherever h(x/c) # 0 , then

(6.25) (f Iw-w1 2h(x/c)dx)l/
2 < c1/2

Proof:

We consider w , w to be defined on R() By Poincard's inequality

I th(x/t) 22rh(x/c) 2J -~ h x / ) E: 2 2, 22

Chx l wC-u 3 d x3 <- GE JE~xc li-3- u31 dx3

CE2fh(xlE)Ie.( Wd
-ch(x/c) 33 3

integration over i yields
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3( R(O)

One computes directly from (6.3) that

f i - 'd -5 cc5

R(E) w u3  _

Combining these two estimates with (4.10) and (6.20), we conclude that

, c2 1-w:52d) + 5/2 +  C 1 2 c " CE
"R( u-u3 2

It follows that

fw-wcE2 hx/rck f w-wEj2dx <x Cc =

Remark 6.2: If h(n) c " > 0 , i.e. if the plate has no holes, then (6.25)

becomes

c(2 1ww d~ /2 "< C CI / 2 ]-
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